skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Das, Ria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a new algorithm that synthesizes functional reactive programs from observation data. The key novelty is to iterate between a functional synthesis step, which attempts to generate a transition function over observed states, and an automata synthesis step, which adds any additional latent state necessary to fully account for the observations. We develop a functional reactive DSL called Autumn that can express a rich variety of causal dynamics in time-varying, Atari-style grid worlds, and apply our method to synthesize Autumn programs from data. We evaluate our algorithm on a benchmark suite of 30 Autumn programs as well as a third-party corpus of grid-world-style video games. We find that our algorithm synthesizes 27 out of 30 programs in our benchmark suite and 21 out of 27 programs from the third-party corpus, including several programs describing complex latent state transformations, and from input traces containing hundreds of observations. We expect that our approach will provide a template for how to integrate functional and automata synthesis in other induction domains. 
    more » « less
  2. Fault and performance management systems, in the traditional carrier networks, are based on rule-based diagnostics that correlate alarms and other markers to detect and localize faults and performance issues. As carriers move to Virtual Network Services, based on Network Function Virtualization and multi-cloud deployments, the traditional methods fail to deliver because of the intangibility of the constituent Virtual Network Functions and increased complexity of the resulting architecture. In this paper, we propose a framework, called HYPER-VINES, that interfaces with various management platforms involved to process markers through a system of shallow and deep machine learning models. It then detects and localizes manifested and impending fault and performance issues. Our experiments validate the functionality and feasibility of the framework in terms of accurate detection and localization of such issues and unambiguous prediction of impending issues. Simulations with real network fault datasets show the effectiveness of its architecture in large networks. 
    more » « less